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ABSTRACT 

We study the possible baryon number violating effects 

induced by the monopoles that are formed due to the 

spontaneous breakdown of the Pati-Salam group 

(SU(2)LxSU(Z)HxSU(4)). This effect is due to the weak 

't Hooft anomaly. Although the baryon number violating 

condensates involving only the first and the second 

generation fermions are suppressed by powers of mixing 

angles, we show that all the relevant mixing angles may be 

large, while still being consistent with the smallness of 

the Kobayashi-Maskawa mixing angles. Hence the baryon 

number violating effects caused by such monopoles need not 

be suppressed. 
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It has been realized for some time that grand 

unification monopoles of the 't Hooft-Polyakov type may 

catalyze baryon number violation at the strong interaction 

rate1)-2! In the original treatment of Rubakov 1) 3 and Callan , 

the origin of this effect was the baryon number violating 

boundary conditions at the monopole core, which, in turn, is 

due to the classical gauge field configuration inside the 

monopole core, in whose presence the baryon number ceases to 

be a conserved quantum number. This mechanism becomes 

inoperative in models where the elementary gauge bosons of 

the theory do not mediate baryon number violation. The 

Pati-Salam mode13), based on the SU(2),xSU(2),xSU(4),, gauge 

group provides an example of such a system. 

There is, however, a completely different mechanism 

which may cause baryon number violation in such a system 4b1. 

This is the effect of weak 't Hooft 7) anomaly . In the 

presence of the SUM gauge interactions, the baryon number 

becomes anomalous. It is this effect which is responsible 

for baryon number violation induced by monopoles of the 

Pati-Salam model. It was shown6) that for sufficiently small 

monopole radius, the baryon number violating condensates 

induced by weak anomaly are unsuppressed by any power of the 

monopole radius, coupling constant or the SU(2jI, breaking 

scale. 

In the absence of any mixing between various 

generations, these condensates contain quark-lepton fields 
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from all the three generations. As a result, these 

condensates necessarily carry three units of baryon number. 

Also, if we want to get rid of the heavy quarks and leptons 

from the condensate, the result is suppressed by some mixing 

angles. 

In this paper, we shall specifically study the baryon 

number violating effects caused by the double strength 

monopole of the Pati-Salam model 8) . Such monopoles are of 

interest, since it has been argued recently 9 that they may 

be abundant in the present universe. We shall show that 

although the baryon number violating condensates involving 

first and second generation fermions are suppressed by some 

powers of 'mixing angles', these angles are unrelated to the 

standard Kobayashi-Maskawa mixing angles. In particular, 

all the relevant mixing angles appearing in the calculation 

of the baryon number violating condensates can be made to be 

of order unity, while keeping the Kobayashi-Maskawa mixing 

angles small. Hence for a favorable choice of the 

parameters of the theory, the baryon number violating 

condensates involving first and second generation fermions 

need not be suppressed by any small number at all. 

Under the SU(~),~SU(~),XSU(~),~ gauge transformation, 

the left and the right handed fermions transform in the 

representation (2,1,4) and (1,2,4) respectively. For 

example, the left handed fermions may be classified as, 



where i(=1,2,3) is the generation index. The SU(21L group 

mixes various rows, and the SU(4) group mixes various 

columns. The right handed fermions may be classified 

similarly, with the SUM group connecting the different 

YOWS rather than the SU(2)L group. Let us assume that 

the gauge group is broken to S~(2)~x~(l)xS~(3)~~l~~ at a 

large scale (>lOl'GeV), which is broken to U(l)emxSU(3)color 

at about 100 GeV. The electric charge operator iS given in 

terms of various generators of the group as, 

62e.m = I,‘ + L ‘($5, 

where I3L and 13R are the diagonal generators of the SU(2)L 

and the SU(2)R subgroups, and FL5 is the properly normalized 

diagonal generator of SU(4) with its diagonal entries 

proportional to (l,l,l,-3). 

Let us consider an SU(2) subgroup generated by, 

7 5 YL + Fp + ‘-T& 

where fL and f R are the generators of SU(2)L and SU(2)p 

respectively, and 1 (34) is the generator of the SU(2) 

subgroup spanning the 3-4 subspace of SU(4). The SU(2) 

subgroup generated by 1 breaks down to the U(1) group 

generated by, 

1, = Qe, - $ x’do~ (4) 
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at the scale of breaking of Su(2~,~su(4~Ps. The double 

strength monopole is constructed by embedding a standard 

't Hooft-Polyakov monopole in this subgroup. The fields, 

transform as doublets under this SU(2) subgroup, whereas the 

fields, 

transform as triplets. All other fields are singlets under 

this gauge group. In studying the interaction of these 

fermions with monopoles, we may treat 

zr:i' 

i ) 
-(i) e L,R 

as another doublet, while the field (i) ' (d3 +v(i))/J2 decouples e 
from the system1g12). 

We may now analyze the system by studying its 

conservation laws'% The case with one generation of 

fermions has been discussed by Schellekens 13 , who found that 

the baryon number violating condensates in this model are 

identical to those in the case of the lowest charge monopole 
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of SU(5). Hence we directly analyze the system with three 

generations of fermions. There are eighteen global U(l) 

symmetries in this model, corresponding to the independent 

phase transformations of each left and right handed 

doublets. In general, these charges are anomalous. We may 

calculate the anomaly in a charge Si by calculating triangle 

diagrams, with the current associated with the charge Si at 

one vertex, the magnetic field of the monopole at the second 

vertex, and the current corresponding to any arbitrary 

linear combination of electric charge, color isospin, color 

hypercharge and weak isospin at the third vertex. We find 

that the following independent linear combinations of the 

charges are anomaly free, 

si = rJti Ci) 
, 

+ tip - PQ’ - iv&“, 
I L 7 

2=1,;7,.3 

s ‘ +3 = 2 OQl + Np) -(N cz, t I\j&" ) i=t,z,<3 
z % I 

3 it6 = /“‘&,:‘I + I\i&‘“, - id &:t’ - r.Jp i- I) 2,,3 
I‘ a. 7 

.'i+8 II /$i, + 1\1+"' - ti (11 - (\1&"' 
U, I ., 

i-z,3 

5 
l.sto 

= N,(i) t (\ldfi) - dufl - p.j\Idftl , i: _7,5 
IL 1L IL 

5’;+,= = N,(i) + b-J,-(i) - NJ, - N&*, i=2,3 
3L L 3L L 
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Besides these fifteen conservation laws associated with 

the global symmetries, the total electric charge, color 

isospin, color hypercharge and weak isospin must be 

conserved. Only three of them are independent of the Sirs 

listed above. 

6 =$ 2 p.Jp + 'vu:;' t qp) -3'wJQ +Np) 
i=t I .J 

- r-J&i, 3 

c, = 2 ( PJ,;i, + r$."' + PJq -t Npr - 2 Iv (;I ) 
i=l I L US 

3 
G, = z ( A(@ - 

i-l IL 
r$“, + nl,cir - p.$‘i, + rJ,A - Np) 

IL .a L‘ JL i 

All the Si's and Gi's must vanish for any operator 

which gets a non-vanishing vacuum expectation value (v.e.v.) 

around the monopole. This gives, 

tiApb + Ndcii = RI$cil A- Ndi’J = -$ ( td,:, + N,e-(i~ 1 = N 
I 

,r- I, 2,s (7) 

g Al&, = 
.3 

t Ne-(j] = 3 N W 
ill .3 j-1 

If N vanishes, then using Eqs. (7) and (8) we see that, 

N &(ij t b4’&Cil 
I I 

= 1\1,:i) + Nd”J 
L 

= 9 /\/tic;, = 2 N,-Cjl = o 
j _ , 3 3:1 

<9) 
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which shows that the total baryon number carried by such an 

operator must vanish. For arbitrary N, the operator carries 

a baryon number of, 

+ 8 lNAcil -IN (i, t /lJp’ 4 r\Jp c N #I) =3N (IO) 
L -1 I U2 L I 2 

which shows that the lowest dimensional operator with a 

non-zero baryon number carries three units of baryon number. 

One such operator, which satisfies all the conservation 

laws, is given by, 

fi ( q;t A;; u;; e;“J) 
,:I (d 

The fields appearing in (11) are the gauge group eiqenstates 

and involve fields from all generations. Naively, we would 

expect that when expressed in terms of the mass eiqenstates, 

these operators would have components which involve fields 

from only the first generation, or from the first and the 

second generations. However, as was shown in Ref.6, if the 

v.e.v. of this operator satisfies the (SU(3)J6 symmetry, 

which corresponds to independent rotations of the six 

doublets in the generation space, the operators of the form 

given in (11) with non-vanishing v.e.v. must involve 

fermions from all three generations, even when we express 

the operators in terms of the mass eiqenstates 51 . Hence 
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11 starting from an operator of the form given in ( 

cannot get rid of the third generation fermions. 

1, we 

However, there are other baryon number violating 

operators which acquire a non-zero vev in the vicinity of 

the monopole. One such operator is, 

If we express gauge group eiqenstates in terms of the mass 

eiqenstates, then the above operator will have components 

which involve particles from the first and the second 

generations only. To see this, let us consider the case of 

extreme mixing in the right handed sector, where the gauge 

9row eigenstates are expressed in terms of the mass 

eigenstates u, c, t, d, s, b, e-, u-, r-, v e' v!J 
and v as, T 

M, u, M, ve Q)A 
d, d, d, Q- i ~5, ~43 K ,. 

‘Ln, u, u, v, 
b, b, b., ‘t- 

t, t, -k3 ‘“‘T 
A, dz 4 i e- K 
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where we have used the convention described in Eq. (1) to 

display the gauge group eigenstates. By choosing the proper 

Yukawa couplings and the v.e.v. of the Higqs fields, it is 

possible to arrange that the fermions in the upper and the 

lower row get their masses from different terms, and that 

the fermion mass terms are really diagonal when expressed in 

terms of the fields u, c, t etc. Expressed in terms of the 

mass eiqenstates, the operator (12) is given by, 

q, u,, L& -&, ?a 4a ?3;R F-R AR d, e-c e-i 

which involve first and second generation fermions only. 

Note that all the standard Kobayashi-Maskawa (KM) mixing 

angles vanish with our choice of the mixing, since for the 

left handed fermions the mass eigenstates are identical to 

the gauge group eigenstates. This shows that the smallness 

of the KM angles does not give any upper bound on the 

operator (14) in the general case. The mixing angles 

required for calculating the v.e.v. of (14) may be made as 

large as we want and at the same time, the standard KM 

angles may be kept as small as we want. 

The operator given in (14) involves two c and one s 

quarks. Hence the final state of a AB=3 decay of a nucleus 

must contain two c and one s quarks. Since the rest mass of 

the three protons is about 3 GeV, we only need a small 
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amount of center of mass energy to produce such particles in 

the final state. For non-relativistic monopoles the 

monopole-nucleus system does not have enough center of mass 

energy to produce two c's in the final state. In this case 

one of the E's must decay into lighter particles via W boson 

exchange. This makes the baryon decay cross-section to be 

of the order of the weak cross section rather than the 

strong cross section. However, it was argued by Goldhaber 4) 

that if the monopole is able to capture protons, then the 

effective decay rate, as observed in a laboratory 

experiment, will be the same, irrespective of whether the 

intrinsic decay rate is strong or weak. (In this case, 

however, the monopole must capture at least three nucleons 

before it can induce baryon decay). 

Finally, we must mention that within the present 

approximation there is no way to get rid of the second 

generation fermions in a dimension eighteen operator. This 

may be explicitly verified by writing down all the baryon 

number violating condensates consistent with the 

conservation laws, and using the (SU(3))6 symmetry in the 

generation space. We may avoid this conclusion if the 

fermion mass terms play a non-trivial role in determining 

these condensates 8 , but we do not discuss it here, since the 

solution of the monopole-fermion system in the presence of 

massive fermion is still unknown. 

I wish to thank Q. Shafi for drawing my attention to 
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this problem, and S. Rao for a critical reading of the 

manuscript. 



13 

FOOTNOTES 
fl This is because the operator 

< u:,“’ 
d;;:’ u;,“,’ eRce,) u;$) &yJ u;;J ($9’ Lcf2 JZh” u’4-” ,q”‘> 

312 

is proportional to 

in the limit of massless fermions. Here for simplicity we 

have ignored dependences on the ji, ki and !Li indices. If 

the mass eigenstates iCi) of the u type quarks are related 

to the gauge group eigenstates u (i) as , 

we get, 

< %:;, d;;’ M;;” e,Le” ,,$ J;J x;d eR(G’ qd,:;’ u;y e;e’> 

acg,., I ‘z. i ’ ‘L i ’ %~.a~.3 I, LL ‘L,, 2,: 

which vanishes unless i 1' i2 and i 3 are different. 
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